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1 INTRODUCTION
Recently, Large Language Models (LLMs) have increasingly been deployed as decision-making
engines, either directly acting as economic agents [Cai et al., 2023, Horton, 2023, Wang et al., 2023a]
or as essential components within broader systems designed for economic decision-making [Shen
et al., 2023, Wang et al., 2023b, Zhuge et al., 2023]. Despite constituting promising demonstrations
of LLM capabilities, such systems have also exposed significant brittleness in LLM performance:
models succeeding in one scenario often fail unpredictably in closely related contexts, suggesting at
least some reliance on superficial pattern matching vs robust economic reasoning [e.g., Hendrycks
et al., 2020, Ribeiro et al., 2020]. Despite this behavior, most existing economic benchmarks nar-
rowly evaluate specific applications and do not rigorously assess the foundational strategic and
computational reasoning skills necessary for reliable economic decision-making. We argue that
before LLMs can be meaningfully evaluated or deployed in information economics, their capacities
for these foundational reasoning capabilities must be systematically assessed.

To address this need, we developed the STEER benchmark [Raman et al., 2024], providing a com-
prehensive assessment of strategic reasoning foundational to economics. STEER was constructed
by taxonomizing distinct "elements of economic rationality," ultimately comprising 64 strategic
reasoning elements, including core concepts from game theory and foundational decision theory.
Leveraging state-of-the-art LLMs, we systematically generated diverse questions across multiple
domains (e.g., finance, medicine, public policy) and varying difficulty levels, creating an extensive
and continually expandable dataset for benchmarking LLM economic reasoning. Building upon
this methodology, we recently expanded the scope of our benchmark with STEER-ME [Raman
et al., 2025], introducing 58 computational microeconomic reasoning elements—such as competitive
market analysis, optimal consumption, and utility maximization. STEER-ME is significantly more
challenging than STEER, not only because it demands precise mathematical computation but also
because the evaluated concepts frequently require careful sequential reasoning, which directly
underpins many critical scenarios in information economics.
In particular, STEER-ME evaluates elements essential for decision-making under uncertainty,

such as correctly computing expected utility, managing state-contingent consumption, and evaluat-
ing the prices and risks inherent in uncertain economic environments. It further includes elements
explicitly testing models’ abilities to systematically update beliefs in response to new information,
such as precisely applying Bayes’ rule and optimally adapting decisions based on revised proba-
bilities. These reasoning capabilities are foundational building blocks for canonical information
economics scenarios—including costly information acquisition, adverse selection, Bayesian persua-
sion, and rational information disclosure—where economic agents must balance the expected value
of information with its cost and dynamically update their beliefs to make rational decisions.
A natural way to see these building blocks working in concert is the element we call Dynamic

Profit Maximization. A firm starts with capital 𝐾1 and tomorrow faces a price 𝑝2 that may be
deterministic, uncertain, or inspectable at cost 𝑐 . Before any uncertainty is resolved the agent
chooses (i) whether to pay the inspection fee 𝐼 ∈ {0, 1} and (ii) a decision rule 𝜙 that maps the
realized price into tomorrow’s capital. Its objective can be written once for all three flavors as

max
𝐼 ∈{0,1},𝜙

𝑝1output(𝐾1) − AdjCost (𝜙 (𝑝2) − 𝐾1) + 𝛿E [𝑝2output(𝜙 (𝑝2)) − 𝐼𝑐] .
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Deterministic:

I run a company that produces handmade
wooden toys. The amount I produce is a func-
tion of the amount of capital (K) I put in, de-
scribed by the function 4.73𝐾0.99. In today’s
market, my toys sell for a price of 2.6 and I
currently have capital 𝐾1 = 3.07. I am trying
to decide how much to grow my capital for
tomorrow’s market. I know the price my toys
will sell at tomorrow is 2.25. I also know that
I will incur a cost of growing my capital equal
to (𝐾1 − 𝐾2)2. Lastly, my discount factor for
the revenue acquired tomorrow is 0.17. If I
want to maximizemy profit howmuch should
I increase my capital?
A. 1.68
B. 0.89 [Correct Answer.]
C. 1.11
D. 0.87

Uncertain Price:

I manage a company that produces eco-
friendly packaging materials. The amount of
packaging we produce depends on our level
of capital (K), represented by the function
4.85𝐾0.44. Currently, our products sell for a
price of 9.18, and we have capital 𝐾1 = 1.74.
As we look towards tomorrow’s market, I
need to decide on the optimal increase in cap-
ital to maximize our profits. The price of our
products tomorrow will follow the distribu-
tion price 3.37with probability 0.31, price 1.92
with probability 0.11, price 9.89 with proba-
bility 0.57. Growing our capital will incur a
cost given by (𝐾1 − 𝐾2)2, and any revenue
earned tomorrow will be discounted by the
factor 0.06. To maximize profit, how much
should I grow our capital?
A. 0.31 [Correct Answer.]
B. 1.24
C. 0.27
D. 0.22

Costly Inspection:

As the lead engineer of a tech startup focusing on cutting-edge software solutions, I am evaluating
our investment strategy in our development infrastructure, which directly influences our software
capability described by 4.81𝐾0.9. Our solutions are currently priced at 2.94, and we have a development
capital of 𝐾1 = 7.36 today. The pricing for our software projects tomorrow follows the distribution
price 𝑝2 = 6.9 with probability 0.24), price 𝑝2 = 3.14 with probability 0.46), price 𝑝2 = 5.61 with
probability 0.3). We can choose to perform a market analysis costing 0.72, allowing us to predict
tomorrow’s exact market pricing. Without this analysis, our investment choices must rely on the
price distribution. Expanding our development capital today incurs costs as defined by (𝐾1 − 𝐾2)2,
and tomorrow’s expected revenues will be affected by a discount factor 0.69. How should I proceed
to optimize our expected profitability?
A. Skip the fee and set a single 𝐾2 = 1.53
B. Pay the fee. If 𝑝2 = 1.3 set 𝐾2 = 1.58; if 𝑝2 = 2.5, 𝐾2 = 1.89; if 𝑝2 = 3.69, 𝐾2 = 2.18 [Correct Answer.]
C. Pay the fee. If 𝑝1 = 1.3 set 𝐾2 = 1.9; if 𝑝2 = 2.5, 𝐾2 = 1.51; if 𝑝2 = 3.69, 𝐾2 = 2.61
D. Skip the fee and set a single 𝐾2 = 1.91

Fig. 1. This figure depicts three example questions in the Dynamic Profit Maximization element. In the
top left is the deterministic flavor, where the tomorrow’s price is given; the top right is the uncertain-price
flavor, where the question gives a distribution over tomorrow’s price; and lastly on the bottom is the costly
inspection flavor, where the question allows the agent to pay some cost to identify tomorrow’s price.

If tomorrow’s price is revealed in advance (the deterministic flavor), 𝑝2 is a constant, 𝑐 = 0, and 𝜙
collapses to a single choice of 𝐾2. If the price is uncertain but inspection is not offered, set 𝑐 = ∞;
the rule 𝜙 must again be constant, so the model must form an expectation over the three-point
distribution before optimizing. In the costly-inspection flavor 𝑐 is finite and 𝜙 may depend on 𝑝2
whenever 𝐼 = 1, turning the task into a value-of-information problem: the agent compares the
expected profit from the price-contingent rule to that from a single prior-based 𝐾2 and inspects
only if the difference exceeds 𝑐 . See Figure 1 for examples of each flavor as an instantiated question.
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Fig. 2. Exact-match accuracy of each of the evaluated models across the Dynamic Profit Maximization
element. Each colored bar denotes the performance of each model on the specific flavor of the element.

2 METHODS
We evaluated four state-of-the-art models: Anthropic’s Claude 3.5 Sonnet and Claude 3.7 Sonnet
and OpenAI’s GPT 4o and o3. While Claude 3.5 Sonnet and GPT 4o are standard language models,
Claude 3.7 Sonnet and o3 are reasoning models. Reasoning models are fine-tuned to conduct
better chain-of-thought reasoning and o3 even has the ability to interleave code execution during
reasoning. To standardize the evaluation, we present each model with the same set of 500 questions
per flavor and allow each model to reason before coming to an answer. For the standard LLMs
we decode with temperature 0 as that is considered optimal for high-fidelity reasoning tasks. For
the reasoning models we sample with temperature 0.6 as is recommended by each provider. Each
prompt lists the scenario and four labelled options; the model’s task is to output the letter of its
chosen option. We score responses with exact-match accuracy, counting an answer correct only
when the returned letter matches the unique correct choice.

3 RESULTS
As can be seen in Figure 2, o3 was nearly flawless in the baseline deterministic-price flavor and loses
only three to five percentage points as uncertainty and information acquisition are layered on. This
robustness is unsurprising: o3 is the only model in the cohort with native code-execution, so once
it forms the correct objective it can offload the calculus to the built-in Python sandbox—turning
what is conceptually challenging but mechanically straightforward optimization into a trivial call
to a solver. Claude 3.7 Sonnet Thinking ranks a clear second. Although it lacks code execution, the
fine-tuned reasoning offers the model noticeably higher accuracy than both GPT-4o and Claude 3.5
Sonnet. However, we observed that it had the largest drop from deterministic to uncertain price out
of all the evaluated models. That large drop suggests that Claude 3.7 Sonnet’s boost in performance
is susceptible to uncertainty in the information set. GPT-4o’s performance mostly clusters in the
low 0.4 range and exhibits little systematic difference between flavors. The flat profile implies that
the step from deterministic optimisation to value-of-information reasoning did not make much
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difference because it was already near random-guessing on the underlying calculus. Surprisingly,
Claude 3.5 Sonnet showed an increase in performance for the costly inspection flavor.
This does not necessarily mean that Claude 3.5 Sonnet was particularly good at value-of-

information reasoning, however. Because the costly-inspection question contains two “pay” menus
and two “skip” menus, the evaluation can—and should—distinguish between two very different
cognitive hurdles. First, a model must decide whether paying the fee is worthwhile. This is the
harder piece of reasoning: it requires forming an expectation over tomorrow’s prices, computing
the marginal value of information, and comparing that value to the fee. Only after the correct
branch is chosen does the model face the comparatively mechanical task of selecting the correct
option for that branch. To tease these skills apart we re-graded every response in two layers: (1)
Strategy accuracy: Did the model pick the correct branch (pay vs. skip)? (2) Conditional-𝐾2 accuracy:
Given that branch, did the model pick the menu whose 𝐾2 values satisfy the conditions within that
branch?

Model Strategy acc. K2 acc. | strategy

o3 0.97 0.98
Claude 3.7 Sonnet Thinking 0.70 0.82
Claude 3.5 Sonnet 0.54 0.80
GPT-4o 0.51 0.83

Table 1. Decomposing accuracy on the costly-inspection flavor of Dynamic Profit Maximization. A random
guesser achieves 0.50 strategy accuracy and 0.25 overall accuracy (two correct branches × two correct menus).

Table 1 shows that o3’s near-perfect score came from both layers: it almost always chooses the
correct branch and almost never mis-computes 𝐾2. Claude 3.7 Sonnet Thinking got the branch
decision right four times out of five and, when it did, chose the correct capital level 82 % of the
time. It trailed o3 but clearly outperforms non-reasoning models, suggesting fine-tuning for chain-
of-thought improved both its value-of-information heuristic and its raw optimisation arithmetic
despite lacking tool use. Claude 3.5 Sonnet and GPT-4o hovered between 51.26 to 54.10% on
strategy accuracy—essentially indistinguishable from random guessing—but still achieved mid-80 %
conditional accuracy. This means they could solve the calculus when the branch is handed to them
yet lacked a reliable rule for judging when information is worth its cost.

4 CONCLUSIONS
Our evaluations provide concrete evidence thatweak proficiency on seemingly “low-level” elements—
expectation formation, Bayes updates—manifests downstream as brittle, surface-level behavior on
more elaborate economic tasks. Even competitive models such as GPT-4o and Claude 3.5 Sonnet
were no better than guessing whether paying for information was worthwhile. In contrast, o3’s
native code-execution combined with fine-tuned reasoning delivered near-perfect performance
across deterministic, uncertain, and costly-inspection variants, illustrating how tool integration
can compensate for gaps in symbolic reasoning.

These findings underscore three broader points. First, information-economics problems expose a
dimension of reasoning—valuing information and acting on contingent states—that is not well tested
by classic optimisation benchmarks. Second, decomposing accuracy is essential for diagnosing
where models actually fail; headline scores alone can be misleading when the multiple-choice
structure embeds partial credit. Third, method matters: models that can off-load algebra to external
solvers enjoy a large advantage, suggesting that benchmark design should explicitly distinguish
conceptual errors from computational ones.
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