
LATEX TikZposter

ALCH: An Imperative Language for the CRN-TAM

Titus H. Klinge1, James I. Lathrop2, Sonia Moreno3, Hugh D. Potter2,
Narun K. Raman3, Matthew R. Riley2

Drake University1, Iowa State University2, Carleton College3

ALCH: An Imperative Language for the CRN-TAM

Titus H. Klinge1, James I. Lathrop2, Sonia Moreno3, Hugh D. Potter2,
Narun K. Raman3, Matthew R. Riley2

Drake University1, Iowa State University2, Carleton College3

Overview /

We introduce ALCH, an imperative language for describing
programs in the CRN-controlled tile assembly model (CRN-
TAM), as well as an ALCH compiler and simulator. ALCH
supports many of the features of the C programming language
and contains a nondeterministic “branching” structure that
allows us to query assemblies as they are built.

We also present a strict construction of the discrete Sierpinski
triangle (DST) in the CRN-TAM; this is known to be im-
possible in the aTAM. ALCH allows us to describe the DST
construction at a high-level, thus allowing us to reason at the
level of algorithms rather than signals and reactions.

The CRN-TAM Model

In 2015 Shiefer and Winfree introduced the chemical reaction
network-controlled tile self-assembly model, or CRN-TAM,
to investigate interactions between non-local chemical signals
and self-assembly systems.

A CRN-TAM program is defined by a finite sets of chemical
signals, tiles, and reactions. These reactions can act upon
both signals and tiles.

•When a tile attaches to the assembly it releases its
removal signal into the solution.

•A tiles removal signal can remove it from an assembly,
if it is bonded at τ strength.

The ALCH Language

ALCH is similar to a subset of the C programming language,
and supports the following operations:

• global Boolean variables with assignment and logical operators

• while loops and conditional evaluation

• tile addition/removal and assembly activation/deactivation

• nondeterministic “branching” to query assemblies (see below)

ALCH does not support function calls; the call stack would
require unbounded information storage. We also have not im-
plemented numeric or compound datatypes.

Code Sample

Basic Techniques

•Sequential execution: We control execution with “line
number species” {X0, X1, . . . , Xn−1}. A reaction with Xi

as a reactant and Xj as a product moves execution from
line i to line j.

•Boolean variables: We use a dual-rail system, where we
represent a variable a with two species (a, a).

•Returning values: For operators like && (logical AND),
our compiler creates a hidden variable to contain the return
value.

•Conditionals and loops: We can control execution
by adding Boolean variables as catalysts to reactions that
change the line number species.

Compiled Example: Conditional

if(a) X0 + a→ X1 + a

{ X1 → X2 + t

add t; X2 + t∗→ X5

}

else X0 + a→ X3 + a

{ X3 → X4 + t∗

remove t; X4 + t → X5

}

Branching and Assembly Queries

Sometimes we want to know which tiles can be added or re-
moved. The branch construct nondeterministically chooses a
“branch path” of reversible add/remove commands. If a
branch can’t complete, execution random walks back to the
branch point.

Compiled Example: Branching

This branching example probes the top of a stack by attempt-
ing to remove both a zero and a one tile.

R = branch

{

false() X0 ↔ X1f + 0∗

{ X1f + 0 ↔ X2f

remove zeroTile; X2f + R→ X3 + R

} X2f + R→ X3 + R

true() X0 ↔ X1t + 1∗

{ X1t + 1 ↔ X2t

remove oneTile; X2t + R→ X3 + R

} X2t + R→ X3 + R

};

Only the zero branch can successfully complete; when it does,
ALCH will set R to false to store which branch completed (i.e.,
which tile popped off of the stack).

Strict Self-Assembly of the DST

Our construction of the discrete Sierpinski triangle (DST)
measures the presence or absence of tiles in a local 3 × 3
matrix. These values are represented by dual-railed Boolean
values and stored as chemical signals in solution. Like the
weak construction we use the XOR operation to complete the
matrix. The matrix is used to determine where tiles should
be placed, with true corresponding to a filled cell and false to
an empty cell.

We are able to temporarily attach scaffolding tiles. These
tiles aid in construction of the DST in by allowing us to access
specific locations in the assembly and by restricting the size
of the frontier.

We are also able to probe the assembly to determine where
tiles should be placed. We accomplish this with ALCH’s
branching mechanism. If the probe detects a tile it returns
a one to the matrix; if it detects the absence of a tile a zero is
returned.

The CRN-TAM is known to be Turing complete, so we could
have calculated which tile to add using a full chemical com-
puter. The probe approach allows us to avoid the full machin-
ery of Turing completeness and rely instead on measuring and
interpreting local information.

branch returns
true or false
based on which
branch path
completed.

PRESENTERS

Sonia Moreno, B.S. 2019

Hugh D. Potter, Ph.D. student

Narun K. Raman, B.S. student

Matthew R. Riley, M.S. student

Research supported in part by National Science Foundation grants 1545028 and 1900716..


